

Previously in ColloidsPhysChem...(I)

emulsion (general)

two-phase system where droplets of one liquid are dispersed in another immiscible liquid (continuous phase)

microemulsions

 thermodynamically stable dispersions made of water, oil & surfactant(s) with droplets of ~ 1 to 100 nm

macroemulsions

- order of magnitude larger drops than in µemulsions, large dispersity
- lyophobic colloids, thermodynamically unstable

G_{syst} G_{syst} E_a^e E_a^b ΔG^e E_a^b E_a^b

formation

breakdown

oil-in-water (O/W) emulsions (water-insoluble) organic droplets dispersed in water

Food Hydrocolloid 2012, 28, 344

water-in-oil (W/O) emulsions aqueous phase dispersed in organic liquid

wikipedia

bulk

liquid

Previously in ColloidsPhysChem...(II)

emulsions are kinetically stable due to the presence of an emulsifier @ the interface between the two liquids

emulsifier

- a substance that adsorbs @ the fluid interface & stabilizes the dispersed liquid within the continuous phase
- different types: surfactants, polymers (proteins, starches, cellulose-based, polyelectrolytes), particles, inorganic anions
- assist in emulsion formation by reducing interfacial tension
- *mainly*: preserve drops from coalescence by forming a mechanical & interaction barrier between the two phases
- better solvent for emulsifier → continuous phase (Bancroft rule)

interactions

- electrostatic repulsion (e.g. ionic surfactant)
- steric repulsion (e.g. non-ionic surfactant or polymer)

mechanical stability

- stabilization of thin film between adjacent droplets that can otherwise become unstable & rupture (Gibbs elasticity)
- polymer or particle stabilizers form interfacial gels that stop drainage

Surfactants

Macromolecules

Fine particles

Fig. 9-4: The mechanism of Gibbs elasticity stabilizing the film between emulsion droplets.

Previously in ColloidsPhysChem...(III)

thermodynamic instability \rightarrow emulsions tend to reduce free energy by reducing total interfacial area (increase in drop diameter)

destabilization mechanisms

- same as for other lyophobic colloids
- flocculation: reversible clustering of droplets
- coalescence: merging of droplets into larger droplets (irreversible)
- macroscopic phase separation: gravity-induced sedimentation or creaming
- Ostwald ripening

Ostwald ripening

- droplet proximity is not required
- mass transfer between drops of different curvature through the surrounding solvent
- mass transfer from small to large drops → latter grow @ the expense of former

Fig, 9-2: The breakdown of emulsions through flocculation and coalescence.

Previously in ColloidsPhysChem...(IV)

foam (IUPAC)

- dispersion in which a large proportion of gas (by volume) in form of bubbles, is dispersed in a liquid, solid or gel
- bubble diameter usually > 1 $\mu \rm m$, but thickness of lamellae between bubbles often in colloidal range

similarities to emulsions

- foam breakdown depends on bubble approaching followed by drainage of continuous phase from the film between them & its rupture (→ coalescence)
- foaming agent: required for a reasonable lifetime

differences with emulsions

stages in a

foam lifetime

- large bubble-solvent $\Delta \rho \rightarrow$ segregation by gravity \rightarrow pressed bubbles form polyhedral structure
- larger draining films \rightarrow complex hydrodynamics
- bubble gases diffuse rapidly across thin films → disproportionation important (larger P in small bubbles)

youtube.com/watch ?v=HPRGa3_On6s

Optical microscopy

Optical microscopy (in its various forms) is a direct method for examining interfaces & colloids

- morphology of surfaces
- information about size & shape of individual • particles & structures of their assemblies

point sources of light from points in object appear as diffraction patterns: bright central region & concentric rings of decreasing intensity (Airy disk)

resolution

- shortest distance (d) between two points that can be distinguished by imaging system as separate entities
- lower $d \rightarrow$ higher resolution • λ : light wavelength

numerical aperture NA

- key parameter for all imaging systems
- larger NA \rightarrow better resolution (objective should have large max. entry angle)
- immersion oil $(n_{oil} > n_{air})$ for increasing NA •

optical microscopy limit (air): $\lambda \approx 0.5 \ \mu m$, NA $\approx 1 \rightarrow d_{min} \approx 0.5 \ \mu m$

Light path in an optical microscope

- microscope \rightarrow 2D magnified image that can be focused axially in successive focal planes (z) & can be moved laterally (x,y)
- optical train: optical + mechanical components of the microscope
- light from a source driven onto sample & after interacting with it, collected by detector
 - reflection microscopy ٠
 - transmission microscopy
 - fluorescent microscopy
 - dark-field (scattering)
- light intensity & orientation controlled with optical elements (diaphragms, mirrors, prisms, beam splitters)
- light-conditioning devices modify image contrast as a function of frequency, phase, polarization, absorption, fluorescence etc.
- optical components (condenser, objective, expiece & camera elements) involved in image formation \rightarrow define quality

Bright-field microscopy

Reflected light microscopy

- method of choice for imaging specimens that remain opaque even when ground to a thickness of 30 μ m
- light from source directed onto sample surface & returned to the objective by specular or diffuse reflection
- useful for examining surfaces of metals, ceramics, semidconductors, wood, plastics

Transmitted bright-field microscopy

- illumination is transmitted white light, contrast caused by light attenuation in sample areas
 → dark sample on bright background
- **contrast**: ability of an individual specimen detail to be distinguished when compared to the background or other adjacent features
- properties producing changes in brightness or color differ. arise from absorption, reflection, refr. index variation, scattering, diffraction
- out-of-focus light originating from planes above & below the focal plane obscure the image

Dark-field microscopy

- popular method for rendering unstained & transparent specimens visible
- invented by Richard A. Zsigmondy (Nobel in Chemistry 1925)
- no direct observation, based light scattering from particles

dark-field illumination

- req. blocking out of central rays along optical axis (norm. passing through sample)
- doing so, allows only oblique rays from large angles to strike the specimen
- achieved using annular stop in condenser
- result: particles scatter light to the objective & thus appear bright, background appears dark

advantages & drawbacks

- can be implemented in ordinary µscopes using an appropriate condenser
- specimens with very low contrast & outlines & boundaries readily observable
- particles down to 5 nm can be detected!
- less useful for revealing internal details

Light Waves Unable to Enter Objective (a) (a) (b) Condenser (b) Condenser

Darkfield Microscope Optical Configurations

http://zeiss-campus.magnet.fsu.edu

Figure 8

cytodiagnostics.com

9

Fluorescence microscopy

fluorescence

- nearly simultaneous light absorption by specimen & subsequent re-radiation (delay < μs)
- fluorescence emission always occurs @ longer λ than that of excitation light

fluorescence microscopy

- sample irradiation with specific λ band & then separate & detect only emmited fluorescent light
- fluorophores: stains attaching to structures; highly specific in their targeting, good quantum yield
- although it cannot provide resolution below diffraction limit, detection of fluorescing molecules below such limit readily achieved
- multiple fluorescence labelling → several target molecules simultaneously identified Anti-mouse (gG Anti-mouse (gG Anti-mouse (gG Anti-mouse (gG Anti-mouse (gG Anti-mouse (gG

10

2011,

836,

1871

Fil

(Filter Cube)

Excitation Filter

Confocal microscopy

widefield fluorescence μ scopy suffers from ٠ light emitted from out of focus regions \rightarrow resolution problems (esp. for thickness > 2 μ m)

confocal microscopy

- slight improvem. in axial & radial resolution
- main advantage: elimination of image ٠ degradation by out of focus information
- widefield µscopy: entire sample (or large ٠ part) illuminated by light from a source (lamp)
- confocal µscopy: a sharply focused laser • beam is scanned (point by point) laterally across the sample \rightarrow optical section

confocal principle

- laser passes through a 1st pinhole situated in a conjugate plane (confocal) with scanning point on sample & a 2nd pinhole positioned in front of detector
- fluorescence from above & below focal plane not confocal with pinhole \rightarrow most of extraneous light not detected

Phys. Rev. Lett. 2016, 116, 098302

butterfly pupal wing epithelium

Coffee break

Tiny gas molecules that make up our Earth's atmosphere scatter the blue portion of sunlight in all directions, creating an effect that we see as a blue sky.

Mario is looking at the sky, wondering: "Why is it blue and why it turns red during sunset?" When the sunlight travels a long path through the atmosphere, the blue light has been mostly removed, leaving mostly red and yellow light.

ptics4kids.org

deviantart.com

fanpop.com

Atomic Force Microscopy (AFM)

Scanning Probe Microscopy (SPM)

"family" techniques in which a sharp tipped probe is moved with atomic precision over/near surface \rightarrow topography &/or surface forces

Atomic Force Microscopy (AFM)

- very-high-resolution type of SPM, with resolution ~ fractions of a nm
- information by "feeling" or "touching" the sample surface with a sharp tip attached to a flexible cantilever → force measurement
- precise scanning achieved by piezoelectric elements capable of accurate movements

three types of measurements

- measurement of tip-sample forces vs. separation → mechanical properties
- *imaging:* 3D topography of surface @ high resolution; scanning & recording tip height corresp. to constant tip-sample interaction
- micromanipulation: forces used to change sample properties controllably (lithography, local stimulation)

Electron microscopy basics

- electrons have wave-like properties (de Broglie)
 → a beam of accelerated electrons can be used for imaging
- resolution of $e^- \mu$ scopy techniques \rightarrow full range of interest for colloids & interfaces
 - h: Planck's constant m: electron mass

e: electron charge V: accelerating voltage

- (relativistic effects) V = 200 keV $\rightarrow \lambda$ = 2.51 pm
- electron microscopy resolution ~ 0.1 nm
- e⁻ microscopes use electromagnetic lens systems; analogous to glass lenses of light microscopes

disadvantages

 $\lambda = \frac{h}{\sqrt{2meV}}$

- expensive to build & maintain; high resol. require stability & magnetic field cancelling
- usually samples must be kept in vacuum because air molecules scatter e⁻ (exceptions: liquid-phase EM, environmental SEM)
- usually samples must be conductive
 → non-conductive materials require conductive coating (Au/Pd alloy, Os); imaging of non-conductive specimen is improving
- hydrated materials (e.g. biological samples) require stabilization, cutting & staining 14

Transmission electron microscopy (TEM)

- demonstrated in 1931 by Max Knoll & Ernst Ruska (Nobel in Physics 1986)
- an e⁻ beam is transmitted through an ultrathin sample to form an image which is then magnified & focused onto a detector

beam e⁻ scattered by e⁻ surrounding the nucleus of atoms → e⁻ density important

Contrast generated by sample thickness

- samples must be fixed either by chemical xlinking (→ shrinkage, distortion, aggregation...) or rapid freezing under high P
- after fixation → embedding in plastic & cut with diamond knife (thickness < 100 nm)

advanced-microscopy.utah.edu

Polymers 2017, 9(10), 521 15

Scanning Electron Microscopy (SEM)

- a focused e⁻ beam is scanned across a solid surface to generate a variety of signals due to e⁻ - sample interactions @ various depths
- various signals: secondary e⁻, back-scattered e⁻, X-rays, transmitted e⁻, luminescent light
- information about external morphology, chemical composition, & crystalline structure & orientation
- areas ~ 5 μ m 1 cm can be scanned
- usual resolution ~ 50 100 nm
- most often: secondary e⁻ emitted from near the surface are detected → information about surface features with resolution ~ 1 nm
- back-scattered e⁻ come from deeper → lower resolution; useful in analytical SEM (+ X-rays)

advantages

versatile imaging technique, easy to use

limitations

- vacuum required (environmental SEM [©])
- usually conductive coating is required

PNAS 2007, 104, 11901

Light scattering basics

scattering from particles (general)

- particles of radius α are illuminated with electromagnetic radiation of λ comparable or larger than $\alpha \rightarrow$ portion of incident photons are re-radiated (scattered) in all directions
- radiation may be light ($\lambda \sim 400 700$ nm), X-rays or neutrons ($\lambda \sim Å$)

light scattering from particles

- when light passes through a transparent medium, its oscillating electric field induces synchronous oscillating dipoles in the molecules → re-emission of radiation
- homogeneous medium \rightarrow light refraction
- inhomogeneous medium due to refractive index variations → light scattering from inhomogeneities
- colloidal dispersions show significant light scattering (Tyndall effect)
- light scattering from colloids depends on particle size, shape, concentrations, refractive indices & spatial arrangement

Ouzo effect

 emulsification & light scattering youtube.com/watch ?v=mk<u>hxY0IG</u>JN4

Static Light Scattering

Rayleigh scattering

- scattering from objects (e.g. nanoparticles) with radius $\alpha \ll$ than the wavelength λ
- scatterers treated as small dipoles oscillating in uniform electric field \rightarrow radiation

Static Light Scattering

- a laser beam illuminates the colloidal dispersion & detector used to measure the scattering intensity I_{θ} @ different scattering angles θ
- dipole (& field) induced in particle by laser electric field
 ∝ particle polarizability
- intensity of scattered light
 ∝ (induced field)²
- basic info: v_p if p_N is known & vice-versa
- in-situ technique contrarily to direct imaging (SEM, TEM) → sample measured in its natural state (low concentrations)

Rayleigh ratio

$$R_{\Theta} = \left(\frac{I_{\Theta}}{I_0}\right) \frac{r^2}{V_s} = \frac{9\pi^2 \rho_N v_p^2}{2\lambda^4} \left(\frac{m^2 - 1}{m^2 + 2}\right)^2 (1 + \cos^2 \theta)$$

 I_0 : incident intensity r: detector – scatterer distance V_s : sample volume ρ_N : particle number density v_p : particle volume $m = \frac{n_p}{n_m}$ n_p : particle refr. index n_m : medium refr. index **18**

Dynamic Light Scattering

Dynamic Light Scattering

- spectroscopy method to determine size distribution of various objects (polymers, micelles, proteins, particles, emulsions...) in solution/suspension down to 1 nm
- similar setup as in DLS used
- particles move randomly due to Brownian motion; interparticle distance affects interference of scattered waves → scattering intensity fluctuations vs. time
- time scale of fluctuations related to particle diffusion rate

autocorrelation function $G(\tau) =$ of scattered intensity

$$= \lim_{T \to \infty} \frac{1}{T} \int_0^T I(t)I(t+\tau)dt = \langle I_S(t)I_S(t+\tau) \rangle$$

au: time shift

 $G(\tau) = A_0 + A\exp(-\Gamma\tau)$ $\Gamma = Dq^2$

Stokes-Einstein-Sutherland

$$D = \frac{k_B T}{6\pi\eta R_h}$$

 η : viscosity of sample R_{h} : particle hydrodynamic radius

T: integration time

 $q = \frac{4\pi}{\lambda} \sin\left(\frac{\theta}{2}\right)$

Soft Matter 2009, 5, 4256 $(10^{6})^{0.00}$ $(10^{6})^{0.00}$ $(10^{6})^{0.00}$ $(10^{6})^{0.00}$ $(10^{6})^{0.00}$ $(10^{4})^{0.00}$ (10

t (s)

pinterest.com