
Physical Chemistry of Colloids

Lecture 9, May 15, 2019

Manos Anyfantakis Physics & Materials Science Research Unit

Previously in ColloidsPhysChem...(I)

Hamaker theory (1937)

simple quantification of London type of vdW interactions between two macroscopic objects

basic assumption

interaction between two bodies approximated by summing the interactions between every pair of molecules that make up the bodies

 $\Phi = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1(\neq i)}^{N} \Phi^{ij}(r_{ij})$

gross approximation: interaction of molecule 1 in particle A with molec. 2 in part. B unaffected by all other molec.!

potential between colloid particles calculated using two components:

- $\Phi = A \cdot f(geometry)$
- a material property, the **Hamaker constant A**, accounting for properties of both particles & solvent
- f (geometry): geometries of the interacting particles & their separation

potential & force can be calculated using tabulated data & formulae

- A may be computed ab initio from molecular parameters
- f (geometry) has been calculated for various cases

23 November 1937

THE LONDON—VAN DER WAALS ATTRACTION BETWEEN SPHERICAL PARTICLES

by H. C. HAMAKER

 $|A_{212} = \left[\sqrt{A_{11}} - \sqrt{A_{11}}\right]$

 $A_{213} = \left(\sqrt{A_{22}} - \sqrt{A_{11}}\right) \left(\sqrt{A_{33}} - \sqrt{A_{11}}\right)$

Natuurkundig Laboratorium der N.V. Philips' Gloeilampenfabrieken Eindhoven-Holland

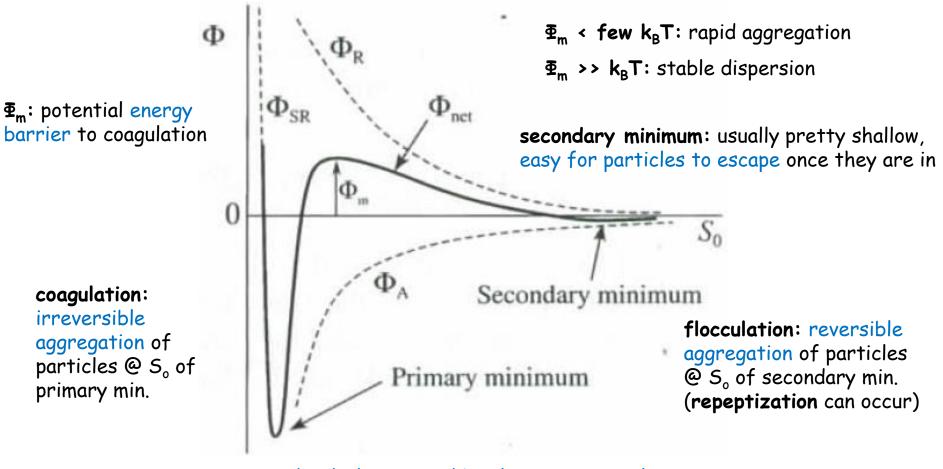
Previously in ColloidsPhysChem...(II)

Lifshitz's approach

- released the Hamaker's assumption by treating interacting bodies as continua
- macroscopic body interactions due to fluctuating EM fields in gap between bodies
- macrosc. material property reflecting propagation & reception of EM energy: dielectric permittivity $\boldsymbol{\epsilon}$
- response of a material to an electric field depends on frequency (polarization does not change instanaeously)
- ϵ ': energy storage in material (polarization); ϵ '': absorption of energy \rightarrow heat
- absorption peaks: key data used in Lifshitz's theory to calculate A

Calculation of A for interaction of media (e.g. particles) 1 & 2 accross medium 3

$$A = \frac{3k_BT}{4} \left(\frac{\varepsilon_1 - \varepsilon_3}{\varepsilon_1 + \varepsilon_3}\right) \left(\frac{\varepsilon_2 - \varepsilon_3}{\varepsilon_2 + \varepsilon_3}\right) + \frac{3h\nu_e}{8\sqrt{2}} \left[\frac{(n_1^2 - n_3^2)(n_2^2 - n_3^2)}{\{(n_1^2 + n_3^2)(n_2^2 + n_3^2)\}^{\frac{1}{2}} \left\{(n_1^2 + n_3^2)^{\frac{1}{2}} + (n_2^2 + n_3^2)^{\frac{1}{2}}\right\}}\right]$$


- 1st term (zero-freq. contribution): includes Debye & Keesom contributions
- 2nd term: non-retarded dispersion energy contribution

Key results

- for two identical bodies ($\varepsilon_1 = \varepsilon_2 \& n_1 = n_2$) $\rightarrow A > 0$, vdW atttractive
- for two different bodies ($\varepsilon_1 \neq \varepsilon_2 \& n_1 \neq n_2$) $\rightarrow A$ can be positive or negative, depending on the medium (3) between them, vdW attractive or repulsive

Previously in ColloidsPhysChem...(III)

Brownian motion energy (~k_BT): means for particles to overcome the potential barrier & aggregate **aggregation probability:** determined by $\underline{\Phi}_m$ height (\rightarrow determines stability against aggregation)

primary minimum: depth determined by short term repulsion (not part of DLVO, could be due to tighly bound hydration layer)

Previously in ColloidsPhysChem...(IV)

influence of salt addition

- \$\mathcal{P}_m\$ decreases strongly with salt conc. \$\mathcal{C}\$ (compression & collapse of double layer)
- critical coagulation concentration (CCC) critical C (~ 400 mM): $\Phi_m \rightarrow 0$, rapid aggregation expected
- coagulation criterion: $\Phi_m = 0$ req.: $\Phi_{net} = 0 \& d\Phi_{net} / dS_0 = 0$
- application of the above to analytical expressions of ϕ_{net} yields CCCs ~ 50 - 250 mM for monovalent salts
- for high ψ_δ (> 100 mV), CCC ~ 1/z⁶, independent of ψ_δ
 (Schulze-Hardy rule, explained by DLVO)

aggregation jar test to determine CCC

Fig. 7-10: Aggregation jar test series for As₂S₃ sol with 1-1 electrolyte concentrations in mM. The *CCC* appears to lie between 60 and 70 mM. From [Overbeek, J. Th. G., **Colloidal and Surface Chemistry**, A Self-Study Subject, Part 2, Lyophobic Colloids, p. 6.6, MIT, Cambridge, MA (1972).]

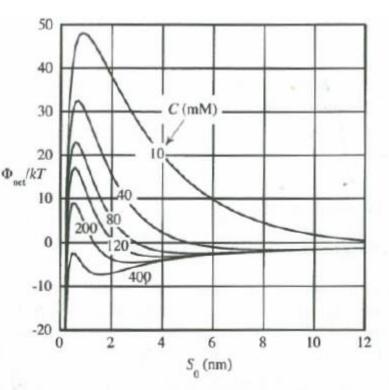
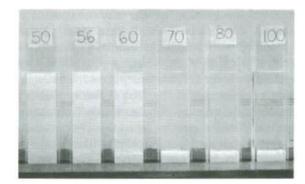



Fig. 7-8: The influence of indifferent electrolyte concentration on the total potential energy of interaction of two spherical particles: $a = 100 \text{ nm}, T = 298 \text{ K}, A_{212} = 0.849 \text{ x} 10^{-20} \text{ J}, z = 1, \psi_{\delta} = 30 \text{ mV}.$

Steric stabilization of colloids

Dispersion

Aqueous

Nonaqueous

Poly(ethylene) Poly(acrylonitrile)

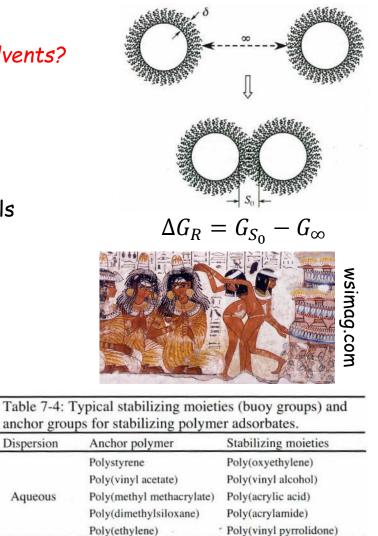
Poly(ethylene)

Poly(oxyethylene)

Poly(vinyl chloride)

Poly(acrylamide)

How is stability (against aggregation) achieved in aqueous media with high [salt] or non-aqueous solvents?


Steric stabilization

-achieved by coating the particle surface with macromolecules (or other entities) -very old method: Egyptians stabilzed pigment dispersions; Faraday used gelatin to stabilze Au sols

best steric stabilizers: block or graft copolymers that consist of both anchor groups & stabilizing moieties ("buoy" groups)

requirements

- anchor groups attached (chemically/physically) to particles (\rightarrow no escape upon approach)
- anchor groups must be insoluble in • the dispersion medium
- stabilizing groups must be as solvophilic • as possible (need for large volume)
- stabilizing groups must have sufficient molar mass (provides needed adlayer thickness)

Polystyrene

Poly(lauryl methacrylate)

Poly(methyl methacrylate)

Poly(dimethylsiloxane)

Poly(vinyl acetate)

6

Steric stabilization of colloids (II)

repulsion (\rightarrow stability) exists only if $\Delta G_R > 0$ upon particle approach (and layer overlap)

$$\Delta G_R = \Delta H_R - T \Delta S_R$$

 $\Delta G_{R} > 0 \rightarrow \Delta G_{R} < 0$: stability \rightarrow instability

entropic stabilization (more common in non-aqueous media)

- large configurational S decrease due to loss of volume accessible to the polymer chains during interpenetration
- ΔH_R small & negative (monomer-solvent interactions slightly weaker than monomer-monomer & solvent-solvent interactions)

enthalpic stabilization (more common in aqueous media)

- occurs when ΔH_{R} relatively large & positive
- monomer-solvent interactions stronger than monomer-monomer & solventsolvent interactions
- often observed in aqueous dispersions stabilized by hydrated polymers; associated with partial dehydration of chains upon interpenetration
- $\Delta S_R > 0$ (decrease in segmental S, larger increase in S of freed water)
- $\Delta H_{R} > \Delta S_{R} \rightarrow \Delta G_{R} > 0$
- dehydration picture cannot be complete: also in non-aqueous media; electrolyte can have a strong effect (→ association of water)

Steric stabilization of colloids (III)

T-dependent stability

- stability → catastrophic destabilization often within 1 - 2 °C
- Critical Flocculation Temp. (CFT):
 T @ which flocculation takes place
- aqueous (non-aqueous) dispersions often flocculated upon T increase (decrease)
- behaviour in sharp contrast to Tinsensitive electrocratic dispersions

Reversible instability

 dispersions re-stabilized by re-heating/re-cooling, contrarily to electrocratic systems

Solvent-induced instability

- Critical Flocculation Vol: amount of (other) solvent req. for flocculation (solvency of stabilizing group reduced)
- reversible once original solvency conditions restored
- stability conditions depend only on nature of stabilizing moiety (good anchoring & total coverage provided)
- large stabilizers: stability independent of molecular weight

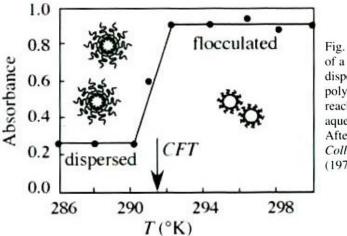


Fig. 7-24: Increase in turbidity of a poly(vinyl acetate) dispersion, stabilized by poly(ethylene oxide), on reaching the *CFT* in an aqueous electrolyte solution. After [Napper, D. H., *J. Colloid Interface Sci.*, **58**, 390 (1977).]

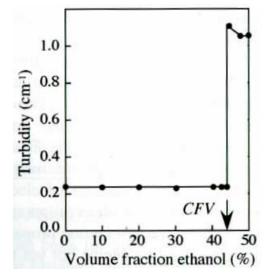


Fig. 7-25: Catastrophic onset of flocculation upon addition of non-solvent for stabilizing moieties (PSA). After [Napper, D. H., *Ind. Eng. Chem. Prod. Res. Develop.*, **9**, 467 (1970).]

8

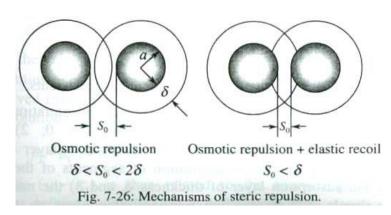
Fischer theory of steric stabilization

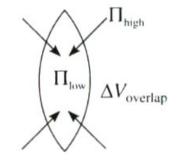
Fischer theory (1958)

- polymer shells partially interpenetrate upon approach \rightarrow osmpotic pressure difference $\Delta\Pi$ between solvent molecules in interaction zone & those in external medium
- $\delta < So < 2\delta$: "external" solvent diffuses into the interaction zone \rightarrow osmotic particle repulsion
- So < δ : elastic recoil repulsion due to volume restriction

osmotic effect

$$\Delta G_{R} = \Delta \Pi \cdot \Delta V_{overlap} = \left(\Pi_{overlap} - \Pi_{ideal} \right) \cdot \Delta V_{overlap}$$


$$\frac{\Pi}{c_2} = RT \left(\frac{1}{M_2} + B_2 c_2 + B_3 c_2^2 + \cdots \right)$$
 Virial expansion of van't Hoff's equation


 M_2 : molecular weight of solute

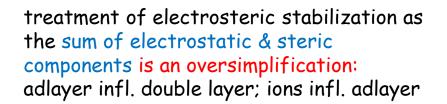
 c_2 : mass concentration of solute

assumptions

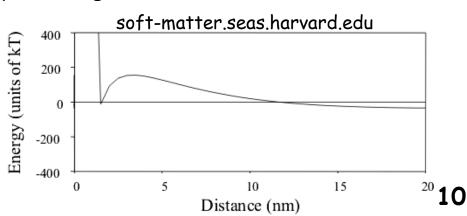
-almost no solute in external medium, c₂ ≈ 0
-uniform [polymer segment] @ the adlayer, c₂ ≈ 2c
(c: average conc. in adsorption layer)
-only pairwise interactions (B₃ & higher order neglected)

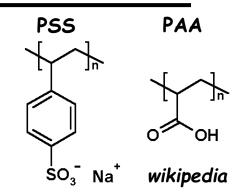
 $\Delta G_R = 2RTB_2c^2\Delta V_{overlap}$

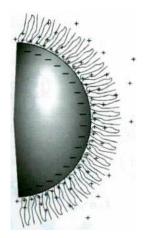
 $B_2 > 0$: good solvent $B_2 < 0$: bad solvent $B_2 = 0$: θ solvent $B_2 = f(T)$


Electrosteric stabilization of colloids

electrostatic & steric stabilization may act synergistically \rightarrow electrosteric stabilization


- involves charged polymers that are adsorbed onto particles
- achieved using i) polyelectrolytes or ii) neutral polymers (particle surface has already a double layer)


polyelectrolytes: polymers whose repeating units bear an electrolyte group which dissociates in water \rightarrow charge


- polyelectrolytes anchor to surfaces of opposite charge \rightarrow excess molar mass & charge \rightarrow thick charged layer
- electrosteric stabilization may be achieved in non-aqueous solvents
- electrosterically stabilized colloids may be very robust:
 electrostatic stabil. insensitive to T & solvent composition
 steric stabil. insensitive to small [electrolyte] changes

200 nm particles, $A_{121} = 7 \times 10^{-20} J$, -100 mV ζ potential, 4 mM ionic strength, 1 nm polymer layer

Bridging flocculation

a very high molecular weight polymer (@ very low concentrations) may adsorb onto two or more particles @ the same time \rightarrow aggregation

bridging flocculation important in wastewater clarification & paper making

first step

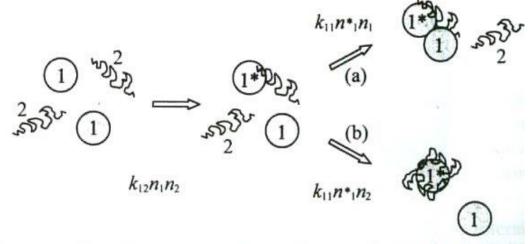
 a polymer (2) adsorbs onto a particle (1) → particle with one attached chain (1*)

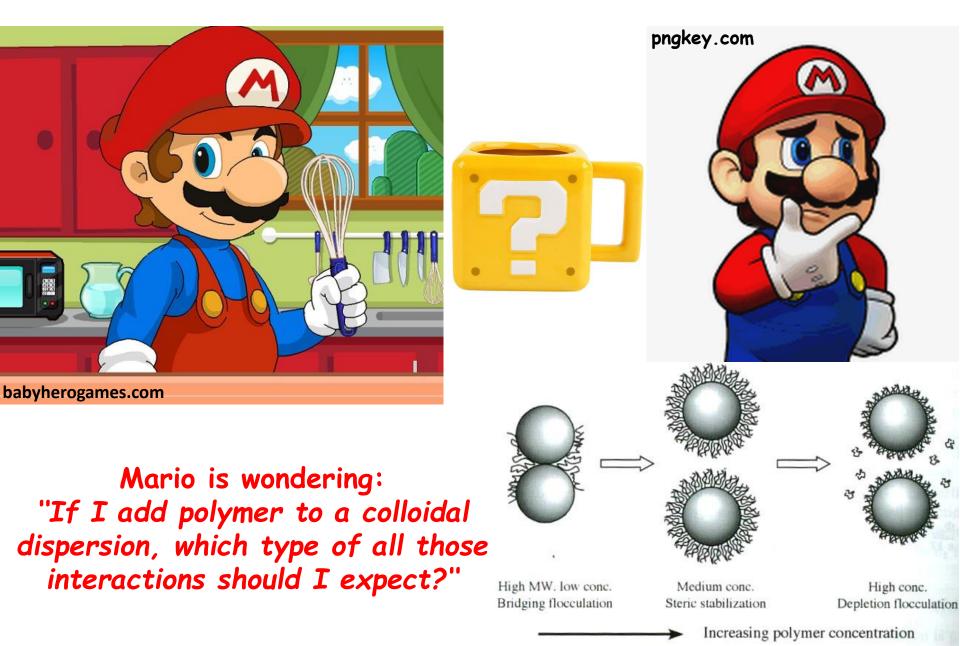
second step

two processes compete

- "reaction" between particle
 1* & particle 1 → bridging
- second polymer adsorbed onto particle 1^{*} → no bridging

reconfirmation of adsorbed chain (→ thinner layer) prevents bridging




Fig. 7-30: Bridging flocculation. Polymer (2) adsorbs first to one particle (1) followed by adsorption to a second particle, as in route (a). In route (b), either the adsorbed polymer re-conforms, or a second polymer molecule adsorbs to the first particle.

[polymer] is as low as possible

bridging favored when:

polymer has very high molecular weight (> 10⁶ g/mol)
 11

Coffee break

Depletion attraction

Depletion interactions arise when non-adsorbing polymers are added to colloidal dispersions

- neutral polymers (e.g. polysaccharides), polyelectrolytes/like-charged surface
- available surfaces already saturated with adsorbed polymers → free polymer
- When no (more) polymer adsorption is possible, free chains are excluded from a zone near the surface with thickness ~ R_g of polymer

two particles (with depletion layers) approaching so that polymer is excluded from the region between them $\rightarrow \Delta \Pi \rightarrow$ flow toward this region \rightarrow attraction

simple treatment

- non-adsorbed entities act as hard spheres with radius = R_q
- completely excluded from depletion zone

$$\Delta G_{\rm dep} = -(\Pi_{\rm soln} - \Pi_{\rm overlap}) \Delta V_{\rm overlap} = -\Pi_{\rm soln} \Delta V_{\rm overlap}$$

$$\Delta G_{\rm dep} = \Phi_{dep} = -\frac{2}{3}\pi n_2 k_{\rm B} T \left(R_g - \frac{S_0}{2} \right)^2 \left(3a + 2R_g + \frac{S_0}{2} \right)$$

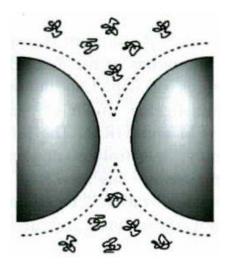


Fig. 7-31: Effect of free (unadsorbed) polymer: "depletion flocculation."

 $\Pi_{\text{overlap}} = 0 \qquad \Pi_{\text{soln}} = n_2 \mathbf{k}_{\text{B}} T$

 n_2 : polymer number concentration in solution **13**

Depletion attraction (II)

$$\Delta G_{\rm dep} = \Phi_{dep} = -\frac{2}{3}\pi n_2 k_{\rm B} T \left(R_g - \frac{S_0}{2} \right)^2 \left(3a + 2R_g + \frac{S_0}{2} \right)$$

- describes depletion interaction features in reasonable agreement with advanced models & experimental data (SFA, AFM, TIRM)
- depletion attraction between colloidal particles increases strongly with decreasing polymer size
- at particle separation $S_0 = 2R_g \rightarrow \text{ no attraction}$
- *R_g*: accounts for influence of T, molecular weight, solvency, & salt content
- depletion effects can also occur due to the presence of surfactant micelles or a second stable colloidal suspension (of smaller particles)

Higher order concentration effects (ideal van't Hoff relaxed) & polymer-polymer interactions permitted

 depletion effect is just the short-range component of a general structural interaction producing longer range oscillatory effects

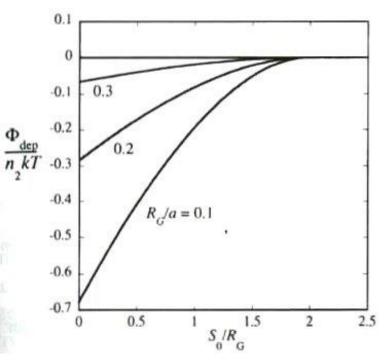


Fig. 7-32: Normalized deletion interactions plotted for different values of the free polymer size to the particle size.

 repulsive component of such oscillations may be the cause of *depletetion stabilization*, observed for higher [polymer]

14

Solvation forces

Structural (or solvation) force

- a different type of force observed experimentally (Surface Force Apparatus SFA, thinning of liquid films)
- oscillatory nature; require that molecules in the medium are able to establish at least medium-range order
- the result of packing constraints imposed on the ordering of solvent molecules (or other dispersed entities) upon approach of two surfaces
- surface roughness important: random microroughness → eliminates oscillatory component → monotonically decreasing repulsion

aqueous media: hydration force

- repulsive, short-range force of exponential form
- degree of hydration depends on exchange of ions of diff. hydration degrees between solution & surface
- used to explain repeptization of electrocratic colloids & high [salt] required to coagulate hydrophilic particles

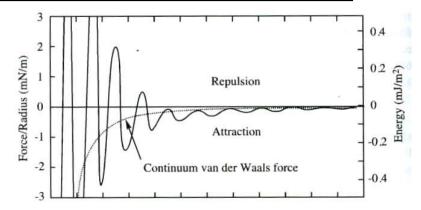
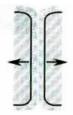
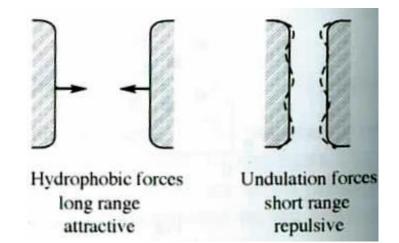



Fig. 7-2: Measured force between mica surfaces in Octamethylcyclotetrasiloxane $(d \approx 9\text{\AA})$. After [Horn, R. G., and Israelachvili, J. N., J. Chem. Phys., **75**, 1400 (1981).]

Structural forces short range oscillatory

Hydration forces short range repulsive

$$\Phi_{\text{hydration}} = Aexp\left(-\frac{S_0}{\lambda_{hyd}}\right)$$


A: const. depending on hydration degree $\approx 3 - 30 \text{ mJ/m}^2$

 λ_{hyd} : decay length $\approx 0.6 - 1.1 \text{ nm}$

Solvation forces (II)

hydrophobic interaction

- arises when either or both surfaces are hydrophobic (*θ_{water}* > certain value)
- hydrophobic surface incapable of forming H-bonds with water molecules
- resulting attractive force can be strong
- especially important for interaction between extended surfaces; importance for colloid stability not yet so firmly established

experiments for hydrophobic quasi-flat surfaces @ S \leq 10 nm

$$\Phi_{\rm hydrophobic} = -Bexp\left(-\frac{S_0}{\lambda_{phob}}\right)$$

B: constant depending on hydrophobicity degree $≈ 20 - 100 \text{ mJ/m}^2$

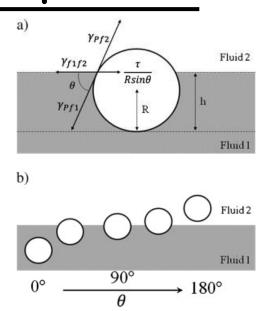
 $\lambda_{phob} \approx 1 - 2 \text{ nm}$

- hydrophobic effect can be large & long-ranged for low-curvature surfaces
- physical origin of hydrophobic attraction is a subject of controversy
- possibly due to nanobubbles residing on hydrophobic surfaces in contact with water (SFA, AFM & ellipsometry support this)
- observations indicate that for $\theta_{adv} > 66^{\circ} \rightarrow hydrophobic$ behaviour $\theta_{adv} < 66^{\circ} \rightarrow hydrophilic$ behaviour

Surface aggregation of colloidal particles

colloidal particles (< 10 μ m) can aggregate when on interfaces; important in many process (flotation, anti-stick surfaces)

a degradation pathway of otherwise stable dispersions


particles migrate to & get trapped @ interfaces (capillary trap) because they are not fully wet by either phase (contact angle > 0°)

electrost.-stabilized particles @ the air-water interface

- Hamaker constant in air > one for particles in water → vdW attraction increased
- double layer only in water
 → electrostatic repulsion decreased

experiment: PS particles @ A-W interface

- $\theta_{part} = 102^{\circ} \rightarrow half-immersed$
- particles arrived @ surface as singlets via diffusion
- doublets, triplets... over time
- aggregation onset @ [salt] ~ two orders of magnit. less than for bulk

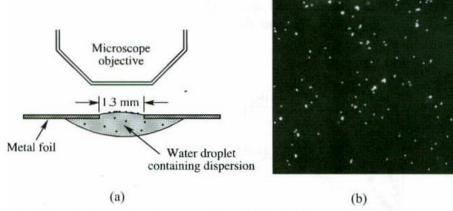


Fig. 7-22: (a) Schematic of sample cell for darkfield microscopic observations of particle adsorption and surface aggregation. (b) Observed aggregate population of 1- μ m diameter PS primary particles at the surface of a 100 mM NaCl solution after 1.6 hr. Field of view shown: 160 μ m. From [Williams, D. F., and Berg, J. C., *J. Colloid Interface Sci.*, **152**, 218 (1992).]

Evolution of structure of aggregates

after aggregates are formed, they grow & form different structures under diff. conditions

early-stage

- pairs of particles stick to each other to form doublets
- dominant even in dense dispersions

middle-stage

 aggreg. grow into structures, the form of which depends on aggregation rate

rapid aggregation

- particles stick @ initial point of contact → aggregates more open & occupy more volume
- fractal (self-similar) structures

slow aggregation

• particles can move & densify \rightarrow denser flocks

electrocratic colloids

rapid aggregation, voluminous structures

sterically stabilized & depletion attraction systems

individual particles can slide around one another & make the aggregate denser

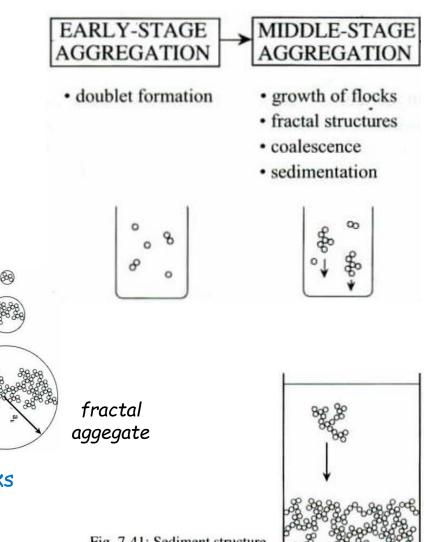


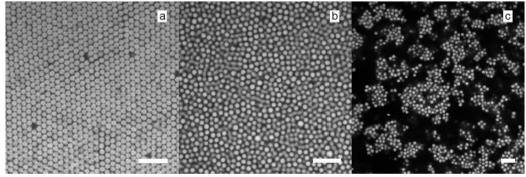
Fig. 7-41: Sediment structure obtained under conditions of rapid aggregation.

Evolution of structure of aggregates (II)

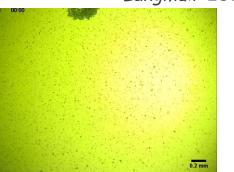
late-stage: structure of "particle assembly" depends on preceding events

gelation

- formation of very voluminous flocks due to rapid aggregation (attraction-driven)
- entire dispersion percolates into a network that can span the whole sample volume


glass transition

- [particle] increase: particles "pack" randomly, still liquid-like structure
- viscosity increases dramatically as transition is approached
- above glass transition: sample cannot equilibrate (frozen)
- colloids as model ("big atoms") for studying this univeral effect


crystallization

- occurs for colloids with size dispersity < 10% that are stable to aggregation (repulsion-driven)
- colloidal crystallization is an entropic effect

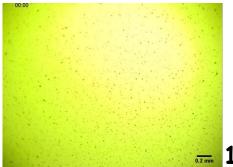

Jeroen Appel, PhD thesis 2017, Wageningen Univ. (NE)

Figure 1.4: Confocal microscopy images of pTFEMA-pTBMA colloids in three different solid-like phases. A colloidal crystal (a), colloidal glass (b) and colloidal gel phase (c). Scale bars 10 μ m.

Langmuir 2018, 34, 15526

